3.5.93 \(\int \frac {\sqrt {a+b x}}{x^{3/2}} \, dx\)

Optimal. Leaf size=45 \[ 2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )-\frac {2 \sqrt {a+b x}}{\sqrt {x}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {47, 63, 217, 206} \begin {gather*} 2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )-\frac {2 \sqrt {a+b x}}{\sqrt {x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x]/x^(3/2),x]

[Out]

(-2*Sqrt[a + b*x])/Sqrt[x] + 2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[a + b*x]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x}}{x^{3/2}} \, dx &=-\frac {2 \sqrt {a+b x}}{\sqrt {x}}+b \int \frac {1}{\sqrt {x} \sqrt {a+b x}} \, dx\\ &=-\frac {2 \sqrt {a+b x}}{\sqrt {x}}+(2 b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sqrt {x}\right )\\ &=-\frac {2 \sqrt {a+b x}}{\sqrt {x}}+(2 b) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt {a+b x}}\right )\\ &=-\frac {2 \sqrt {a+b x}}{\sqrt {x}}+2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 64, normalized size = 1.42 \begin {gather*} \frac {2 \left (\sqrt {a} \sqrt {b} \sqrt {\frac {b x}{a}+1} \sinh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )-\frac {a+b x}{\sqrt {x}}\right )}{\sqrt {a+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x]/x^(3/2),x]

[Out]

(2*(-((a + b*x)/Sqrt[x]) + Sqrt[a]*Sqrt[b]*Sqrt[1 + (b*x)/a]*ArcSinh[(Sqrt[b]*Sqrt[x])/Sqrt[a]]))/Sqrt[a + b*x
]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.07, size = 47, normalized size = 1.04 \begin {gather*} -\frac {2 \sqrt {a+b x}}{\sqrt {x}}-2 \sqrt {b} \log \left (\sqrt {a+b x}-\sqrt {b} \sqrt {x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a + b*x]/x^(3/2),x]

[Out]

(-2*Sqrt[a + b*x])/Sqrt[x] - 2*Sqrt[b]*Log[-(Sqrt[b]*Sqrt[x]) + Sqrt[a + b*x]]

________________________________________________________________________________________

fricas [A]  time = 0.93, size = 89, normalized size = 1.98 \begin {gather*} \left [\frac {\sqrt {b} x \log \left (2 \, b x + 2 \, \sqrt {b x + a} \sqrt {b} \sqrt {x} + a\right ) - 2 \, \sqrt {b x + a} \sqrt {x}}{x}, -\frac {2 \, {\left (\sqrt {-b} x \arctan \left (\frac {\sqrt {b x + a} \sqrt {-b}}{b \sqrt {x}}\right ) + \sqrt {b x + a} \sqrt {x}\right )}}{x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(3/2),x, algorithm="fricas")

[Out]

[(sqrt(b)*x*log(2*b*x + 2*sqrt(b*x + a)*sqrt(b)*sqrt(x) + a) - 2*sqrt(b*x + a)*sqrt(x))/x, -2*(sqrt(-b)*x*arct
an(sqrt(b*x + a)*sqrt(-b)/(b*sqrt(x))) + sqrt(b*x + a)*sqrt(x))/x]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.04, size = 61, normalized size = 1.36 \begin {gather*} \frac {\sqrt {\left (b x +a \right ) x}\, \sqrt {b}\, \ln \left (\frac {b x +\frac {a}{2}}{\sqrt {b}}+\sqrt {b \,x^{2}+a x}\right )}{\sqrt {b x +a}\, \sqrt {x}}-\frac {2 \sqrt {b x +a}}{\sqrt {x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(1/2)/x^(3/2),x)

[Out]

-2*(b*x+a)^(1/2)/x^(1/2)+b^(1/2)*ln((b*x+1/2*a)/b^(1/2)+(b*x^2+a*x)^(1/2))*((b*x+a)*x)^(1/2)/(b*x+a)^(1/2)/x^(
1/2)

________________________________________________________________________________________

maxima [A]  time = 3.00, size = 54, normalized size = 1.20 \begin {gather*} -\sqrt {b} \log \left (-\frac {\sqrt {b} - \frac {\sqrt {b x + a}}{\sqrt {x}}}{\sqrt {b} + \frac {\sqrt {b x + a}}{\sqrt {x}}}\right ) - \frac {2 \, \sqrt {b x + a}}{\sqrt {x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(3/2),x, algorithm="maxima")

[Out]

-sqrt(b)*log(-(sqrt(b) - sqrt(b*x + a)/sqrt(x))/(sqrt(b) + sqrt(b*x + a)/sqrt(x))) - 2*sqrt(b*x + a)/sqrt(x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\sqrt {a+b\,x}}{x^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)^(1/2)/x^(3/2),x)

[Out]

int((a + b*x)^(1/2)/x^(3/2), x)

________________________________________________________________________________________

sympy [A]  time = 1.56, size = 68, normalized size = 1.51 \begin {gather*} - \frac {2 \sqrt {a}}{\sqrt {x} \sqrt {1 + \frac {b x}{a}}} + 2 \sqrt {b} \operatorname {asinh}{\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}} \right )} - \frac {2 b \sqrt {x}}{\sqrt {a} \sqrt {1 + \frac {b x}{a}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(1/2)/x**(3/2),x)

[Out]

-2*sqrt(a)/(sqrt(x)*sqrt(1 + b*x/a)) + 2*sqrt(b)*asinh(sqrt(b)*sqrt(x)/sqrt(a)) - 2*b*sqrt(x)/(sqrt(a)*sqrt(1
+ b*x/a))

________________________________________________________________________________________